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Introduction to maximum entropy 

D. S. Sivia 
Theoretical Division and Los Alamos Neutron Scattering Center 
Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 
USA 

ABSTRACT: The maximum entropy (MaxEnt) principle has been 
successfully used in image reconstruction in a wide variety of fields. We 
review the need for such methods in data analysis and show, by use of a very 
simple example, why MaxEnt is to be preferred over other regularising 
functions. This leads to a more general interpretation of the MaxEnt method, 
and its use is illustrated with several different examples. Practical difficulties 
with non-linear problems still remain, this being highlighted by the notorious 
phase problem in crystallography. We conclude with an example from 
neutron scattering, using data from a filter difference spectrometer to contrast 
MaxEnt with a conventional deconvolution. 

1. Introduction 

In many scientific experiments, the quantity of interest f is related to the data d 
through some transformation 0 and noise Q: 

d = 0.f + CJ. 

For example, f might be the radio-flux distribution of an astronomical source, the 
momentum distribution of atoms in liquid helium, or the scattering law in a neutron 
scattering experiment, and so on. The transformation operator 0 might represent a 
Fourier transform or a convolution with an instrumental resolution function. The job 
of data analysis is to infer the desired quantity f from the data d. 

The simplest way of deriving an estimate of f, P, from the data is to apply the 

inverse transform 0-t to the data: P = 0-t .d. In many cases, however, we cannot 
do this because the inverse operator does not exist, often because we have missing 
data. We cannot Fourier transform a data set, for example, if we have unmeasured 
data. Even if we can compute the inverse transform, our reconstruction will have 
many artifacts because we have not taken into account the fact that the data were 
noisy: 

P = 0-l .d = f + 0-l .CJ . 

We will illustrate the effects of noise on the direct inverse graphically in Section 6. 

The fact that the data are both noisy and incomplete means that our problem is 
fundamentally ill-posed-there are many reconstructions of f permitted by the data. 
We can consider all the reconstructions that would give data consistent with those 
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actually measured by setting up a misfit statistic-_x2 is often appropriate: 

k=l (3k 

where dk is the kti measured datum, with error-bar CQ, and 8 k is the COITeSpOndiIIg 

datum that a trial reconstruction P would produce in the absence of noise: a k = [O . 

Elk. Those reconstructions that give x2 I N are deemed to have “fit the data” and 

constitute the feasible set of P. This feasible set, however, is incomprehensibly 
large: suppose we wish to reconstruct a 2-d image on an 8x8 pixel grid with just 16 
grey levels: this gives a total number of 1O77 possible reconstructions. Even if the 
data restricted the intensity of each pixel to vary only by (*) one level on average, the 
feasible set would still consist of 1030 possible reconstructions. This is enormous if 
you compare it with age of the universe, which is only 1017 seconds. Real problems 
are typically 128x128 pixel grids with 256 grey levels! 

As we cannot even comprehend the total number of solutions, let alone compute and 
display them, we are forced to make a selection. We would like to say this is our 
(“best”) estimate of the true f. Which solution should we select? 

2. The principle of maximum entropy 

If f is a positive and additive quantity-for example, a probability density function, 
or the intensity distribution of an optical picture, or the radio-flux distribution of an 
astronomical source-then the MaxEnt principle states we should choose that 
solution which maximises the Shannon-Jaynes entropy S (Jaynes 1983, Skilling 
1988): 

S = C fj - mj - fjlOg(fj/mj) , 

where fj is the flux in the jrh pixel of the digitized reconstruction of f, and (mj) is a 
starting model which incorporates any prior knowledge we have about f; in the 
absence of any such knowledge, all the rnj are set equal. If f is a normalised quantity 
such that C fj = 1 and (mj) is constant, then entropy reduces to the more familiar 
fOMl--C fjlOg(fj). 

But why should we choose the MaxEnt solution? We shall try to answer this 
question by using a specific, and very simple, example and then give a more general 
interpretation of the MaxEnt choice. 

2.1 The kangaroo problem 

MaxEnt is not the only regularising function used in image reconstruction: several 
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have been recommended. We will follow Gull & Skilling (1983) in using the 
kangaroo problem to demonstrate our preference for the MaxEnt choice over the 
alternatives. It is a physicists’ perversion of a mathematical argument given by 
Shore & Johnson (1980), where they formally show that MaxEnt is the only 
regular&g function that yields self-consistent results when the same information is 
used in different ways. The kangaroo problem is as follows: 

Information: (1) One third of kangaroos have blue eyes. 
(2) One third of kangaroos are left-handed, 

Question: On the basis of this information alone, estimate the 
proportion of kangaroos that are both blue-eyed and 
left-handed. 

Clearly, we do not have enough information to know the correct answer: all 
solutions of the type shown in the 2x2 contingency table of Fig. 1 (a) fit the data- 
these constitute thefeasible set of solutions, each of which is equally likely. Figs. 
l(b)-(d) show three of the myriads of feasible solutions: namely, the one with no 
correlation and the ones with the maximum positive and negative correlations, 
respectively. Although the data do not allow us to say which is the correct solution, 
our common sense compels us to the uncorrelated solution if we are forced to make a 
choice-no other single choice is defensible. 

(c) Maximum positive correlation 
(d) Maximum negative correlation 

Table 1 shows the result of selecting the solution by maximising four commonly 
used regularising functions. For this very simple example, where common sense tells 
us the ” best” answer when faced with insufficient (but noise-free) data, it is only the 
Shannon-Jaynes entropy that yields a sensible answer! 

Regularisation function 

Table 1 

Proportion blue-eyed and left-handed (x) Correlation 

r _ Z fjlOg(fj) 

- X fj2 

x log(fj) 

Z fj’12 

1P Uncorrelated 

l/12 Negative 

0.13013 Positive 

0.12176 Positive 
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Can we interpret the MaxEnt choice more generally? 

2.2 The monkey argument 

Our common sense recommended the uncorrelated solution because, intuitively, we 
knew that this was the least committal choice. The data itself did not rule out 
correlation but, without actual evidence, it was (a priori) more likely that the genes 
controlling handedness and eye-colour were on different chromosomes than on the 
same one. Although we cannot usually appeal to specific knowledge like genes and 
chromosomes, we can use the monkey argument of Gull 8z Daniell (1978) to see 
more generally that the MaxEnt choice is the one that is maximally non-committal 
about the information we do not have. The monkey argument can (again) be thought 
of as a physicists’ perversion of the formal work of Shannon (1948) showing that 
entropy was a unique measure of information content. The monkey argument is as 
follows: 

Imagine a large team of monkeys who make images (f), at random, by throwing 
small balls of flux at a (rectangular) grid. Eventually, they will generate all possible 
images. If we have some data relating to an object (f), we can reject most of the 
monkey images because they will not give data consistent with the experimental 
measurements. Those images that are not rejected constitute the feasible set. If we 
are to select just one image from this feasible set, the image that the monkeys 
generate most often would be a sensible choice. This is because our hypothetical 
team of monkeys have no particular bias, and so this choice represents that image 
which is consistent with the measured data but, at the same time, is least commital 
about the data we do not have. This preferred image is the MaxEnt solution. 

3. Model-fitting and least squares 

The quantity of interest f is usually a continuous quantity. For computational 
purposes, however, we digitize it into a discrete set of pixels (fj}. This is not a 
limitation because we can digitize as finely as we like, but it does result in us having 
to estimate a large number of parameters (flux in each pixel) from a relatively small 
number of data. The problem tends to be grossly under-determined and, hence, we 
use Matint to help us. 

Sometimes we are more fortunate in that we have a functional model for f-the sum 
of six S-functions, or two Gaussians, for example. In this case f can be 
parameterised by a handful of variables. We now have to estimate a small number of 
parameters from a relatively large number of data-the problem is over-determined. 
In these cases, and with suitable assumptions, the method of least squares is usually 
appropriate. 

If we have a sound basis for our model, then model-fitting with least squares will 
give more accurate results than MaxEnt-we are using much more prior knowledge 
in the model-fitting procedure than we are in MaxEnt. If we do not have a functional 
model, or if our model is ad hoc (“tq fitting Gaussians”), then we arc better off using 
MaxEnt, It is possible, and perhaps to be recommended, that we combine the use of 
MaxEnt and model-fitting: use MaxEnt to obtain an initial reconstruction to get an 
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overall picture; if the MaxEnt reconstruction and our prior physical knowledge 
suggest a functional model, then use this in a least squares sense for further 
quantitative analysis. 

4. General examples 

We refer the reader to a comprehensive review by Gull & Skilling (1984) for 
numerous examples of the applications of MaxEnt. With theti kind permission, a 
small selection of these are reproduced in Fig. 2. They illustrate the wide range of 
problems to which MaxEnt is now applied-forensic imaging, radio astronomy, 
plasma diagnostics, medical tomography, and blind deconvolution. 

5. Difficult problems 

The principle of MaxEnt is quite general and can be applied to any problem where the 
object of interest is a positive and additive quantity. Actually, finding the MaxEnt 
solution can be very difficult for non-linear problems because there are many local 
minima of x2 in a large parameter-space (typically lo5 pixels). A particularly well- 
known example is the notorious Fourier phase problem in crystallography, the 
gravity of the situation being graphically illustrated in Fig. 3. We will not pursue 
this topic any further here except to state that, in general, the use of additional prior 
knowledge is essential for these problems (see, for example, Sivia 1987). 

6. The Filter Difference Spectrometer 

We now give an explicit example from neutron scattering-the deconvolution of data 
from a filter difference spectrometer (FDS). For the experimental and spectrometer 
details, the reader is referred to Taylor, et al., (1984). The essential point for our 
purposes is tbat the FDS has a resolution function with a fairly sharp edge and a long 
decaying tail. The Cambridge algorithm was used throughout to maximise the 
entropy (Skilling & Bryan, 1984). 

We start with simple simulations to highlight the differences between MaxEnt and a 
conventional direct inverse under “controlled” conditions. They do not mimic the 
FDS exactly but capture its salient features. For these simulations, the true 
spectrum f(x) (scattering law) is shown in Fig. 4(a): it consists of two spikes 
separated by a low plateau on the left and a much broader peak on the right. This 
“truth” was generated on a grid of 128 pixels and’convolved with a sharp-edged 
exponential e-a, where r = 15 pixels, shown in Fig. 4(b), to create a noiseless data 
set of 128 points. A constant (‘known”) background equal to 10% of the peak datum 
was used and Gaussian random noise with a standard deviation equal to the square roOt 
of each datum was added. Fig. 4@) shows this simulated data set when the peak 
datum was lo* (counts)-essentially noiseless. For this case, both MaxEnt and the 
direct inverse (O-‘.d) gave reconstructions indistinguishable from the the truth (Fig. 
4a). Figures 5 and 6 show the corresponding results when the data were made more 
noisy (fewer counts). The quality of the reconstructions deteriorates for both 
methods. Since the direct inverse does not take into account the fact that the data are 
noisy (Section l), it produces numerous artifacts and deteriorates much more rapidly 
than hJaxEnt. 



250 Introduction to maximum entropy 

before after 

Maximum entropy deconvolution 

(UK Home Office) 

ME X-ray tomography 
(skull in perspex, EM1 Ltd) 

SNR Cas A at 5 GHz - 1O242 ME image 

(5-km telescope MRAO, Cambridge) 

mmqave Michelson interfero- 

meter spectrum of cyclotron 
emission from DITE tokamak 

(Culham Laboratory) 

BLIND p 
"Blind" deconvoltition of 

BLIND unknown blurring. 

(left) true image P, blurring 

- 
WICIrW_ BLUZRED RECOIJSTRWTED 

(middle) data as given to 

ME program 

(right) reconstructions 
(T. J. Newton) 

r MAXENT r 

m P.S.F. RiXONSTRUCTED 

Fig. 2 General examples of MaxEnt image reconstruction. Reproduced by 
courtesy of Drs. Gull and Skilling. 
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Fig. 3 A graphic illustration of the phase problem: (a) and (b) are the original 
images. (c) is the (Fourier) reconstruction which has the Fourier phases of (a) and 
Fourier amplitudes of (b); (d) is the reconstruction with the phases of (b) and the 
amplitudes of (a). 
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Fig. 4 (a) Spectrum or idealised scattering law, used in the FIX simulations. (b) A 
first approximation to the FDS resolution function: a sharp-edged exponential. (c) 
simulated data set with very good statistics. (d) A better approximation to the FDS 
resolution function: sharp-edged exponential convolved with a narrow Gaussian. 
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Direct Inverse (Exp Blur). or “Mezei” Direct Inverse (Exp Blur), or “Mezei” 
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X 

Fig. 5 (a) Simulated FDS data with Fig. 6 (a) Simulated FDS data with a lot 
some noise. (b) Direct inverse. (c) of noise. (b) Direct inverse. (c) MaxEnt 
MaxEnt reconstruction. reconstruction. 

0 50 100 

X 
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Rather than use the sharp-edged exponential above (Fig. 4b), we obtain a better 
approximation to the FDS resolution function if we convolve it with a narrow 
Gaussian (standard deviation of one pixel). The resulting simulated data, with good 
statistics, is shown in Fig. 7(a). Although we can deconvolve this new resolution 
function with the direct method in principle, we will only deconvolve the exponential 
component as is done in practice (Mezei & Vorderwisch 1989). This is because the 
inverse is easy to calculate if there is a sharp edge (by direct substitution), but more 
so because the inverse becomes badly conditioned (very sensitive to noise in the data) 
when the Gaussian component is included. With MaxEnt, however, we can safely 
deconvolve the “smoothed” resolution function. The inverse and MaxEnt 
reconstructions are shown in Figs. 7(b) & (c), respectively. The MaxEnt 
reconstruction shows much imuroved resolution and some noise suppression over the 
direct inverse. 

Data Direct Inverse (Exp Blur), or “Mezei” 

Fig. 7 (a) Simulated FDS data, with 
good statistics, using the exponential 
convolved with a narrow Gaussian 
resolution function (Fig. 4d). (b) Direct 
inverse deconvolution of the 
exponential component, or “Mezei 
method” reconstruction. (c) MaxEnt 
reconstruction, showing that the 
Gaussian component can be safely 
deconvolved to give improved image 
resolution. 

8- 

m 

I ’ I 

(b) 

MaxEnt Reconstruction 

Finally, we show the result of using MaxEnt on a a real FDS data set. The data and 
resolution function were provided by Vorderwisch, experimental and analysis details 
being given in forthcoming papers (Vorderwisch 1989, and Sivia et al., 1989). Fig. 
8(a) shows the Be data for hexamethylene-tetramine (HMT) at 15 K taken at the Los 
Alamos Neutron Scattering Center (LANSCE). Fig. 8(b) shows the conventional 
Filter Di@mce spectrum: a crude hardware deconvolution obtained by subtracting 
the data obtained with Be and Be0 filters. Fig. 8(c) shows the MaxEnt 
reconstruction, and Fig. 8(d) shows this overlaid on the direct inverse reconstruction 
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Fig. 8 (a) FDS data for Hexamethylene-Tetramine, at 15 K, taken with the Be filter 
at LANSCE. The channels are in increasing time-of-flight, or decreasing energy 
transfer. (b) The Filter Difference spectrum, or a crude hardware deconvolution 
obtained by subtracting data obtained with Be and Be0 filters. (c) The MaxEnt 
reconstruction. (d) The direct inverse, or “Mezei method”, reconstruction (dots) 
overlaid on the MaxEnt reconstruction. 

mentioned above. As expected, we find that MaxEnt has improved the resolution and 
reduced the noise. The improvement is obvious, but not dramatic, in this particular 
example, because we had good statistics and the intrinsic Gaussian-like contribution 
to the resolution function is very narrow with little effect. 

7. Concluding remarks 

We have shown that MaxEnt provides an optimal criterion for selecting a positive 
image when faced with incomplete and noisy dam. The MaxEnt choice can be 
interpreted as the maximally non-committal solution that is consistent with the data. 
As such, it tends to be less noisy and has fewer artifacts than conventional methods, 
thus making it easier to interpret the results. 
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We mention in passing that a unified approach to all data analysis (MaxEm, model- 
fitting, or whatever) can be achieved by casting all such problems in the probabilistic 
framework of a Bayesian analysis. This not only gives us the way to select the 
optimal answer to any given problem, but it also tells us how to estimate the 
reliability of that solution; unfortunately, however, the error analysis is usually 
impossible to implement in practice except for the smallest of problems. The 
difficulty does not arise because we are using MaxEnt, but because we are trying to 
estimate a large number of parameters. 
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